

Figure 3. Relationship between the upper critical solution temperature $T_{\rm ucs}$ of ammonia + *n*-alkane systems and the number N of carbon atoms in the n-alkane.

3 and the devlation of the experimental values of the miscibility temperature from those calculated with eq 3 are shown in Table II. Equation 3 can fit the experimental temperature with a mean deviation of less than 1.1 K. There is a linear relationship between T_{UCS} and the number of carbon atoms, N, in the n-alkane (Figure 3).

$$T_{\rm UCS}/{\rm K} = 6.4454N + 288.58$$
 $N = 5-12$ (4)

Glossary

- A 1, A 2, constants in eqs 2 and 3
- B, b1
- N number of carbon atoms in n-alkane
- Ρ pressure, MPa
- Т temperature, K

 $T_{\rm UCS}$ upper critical solution temperature, K

mass fraction of ammonia X

Subscripts

UCS upper critical solution point

Registry No. NH₃, 7664-41-7; H₃C(CH₂)₈CH₃, 142-82-5; H₃C(CH₂)₈CH₃, 124-18-5; H₃C(CH₂)₉CH₃, 1120-21-4; H₃C(CH₂)₁₀CH₃, 112-40-3.

Literature Cited

- (1) Yokoyama, C.; Hosaka, S.; Kaminishi, G.; Takahashi, S. J. Chem. Eng. Data 1990, 35, 5.
- (2)Beysens, D. J. Chem. Phys. 1979, 71, 2557.
- (3)
- Greer, S. C. Phys. Rev. A 1976, 14, 1770. Levelt-Sengers, J. M. H.; Sengers, J. V. Perspective in Statistical Physics; North-Holland: Amsterdam, 1981; Chapter 14. (4)

Received for review May 29, 1990. Revised October 4, 1990. Accepted June 4, 1991.

Temperature and Concentration Dependence of Viscosity of the $NICl_2 + CH_3OH$ System

Sekh Mahluddin[†]

Department of Chemistry, North-Eastern Hill University, Bijni Complex, Laitumkhrah, Shillong 793 003, India

Density and viscosity of the NICl₂ + CH₃OH system were measured as functions of temperature (288.15-323.15 K) and concentration (0.01817-5.3086 m). The temperature dependence of viscosity has been analyzed by using the Vogel-Tammann-Fulcher (VTF) equation. The concentration dependence of viscosity has been described by using a three-parameter isothermal equation.

Introduction

Extensive studies on the properties of aqueous solution has provided sufficient data to enable us to correlate the effects of variation in concentration on the physicochemical properties of aqueous electrolytic solutions. The study of nonaqueous electrolytic solutions to obtain the same type of information, however, has been guite limited.

Earlier we have reported an isothermal equation of the form

$$Y = a \exp(bm + cm^2) \tag{1}$$

to describe the concentration dependence of Y (viscosity and conductivity) of 1-1, 1-2, and 2-1 valent aqueous electrolytic solutions (1-3) over a concentration range. In eq 1, a, b, and c are adjustable parameters and m is the molality.

In the present paper we have made use of eq 1 to describe the viscosity of the NiCl₂ + CH₃OH system as function of concentration.

Experimental Section

Materials. Anhydrous nickel chloride (SD, AR grade) was prepared as described elsewhere (4) and was kept in a vacuum desiccator over silica gel until used. Methanol (SM, LR grade) was treated with quicklime and was distilled after refluxing for about 4 h. Finally anhydrous methanol was prepared by using a dry magnesium turnings and iodine mixture as described elsewhere (5). Only the middle fraction was used in our study. The molecular weights of nickel chloride and methanol used in the present study were 129.62 and 32.04, respectively, having an assay of more than 99.8%. The densities of anhydrous methanol as measured at 298 and 303 K were found to be 0.786 47 and 0.781 70 g cm⁻³, which are in good agreement with the literature values 0.7864 and 0.7816 g cm⁻³ (θ) and 0.786 45 and 0.781 81 g cm⁻³ (7), respectively.

Preparation of Solutions. Solutions of the nickel chloridemethanol system of different concentration were prepared by weight.

Density Measurements. Densities of all the solutions were measured with a single-stem graduated pycnometer provided with a well-fitted glass stopper to prevent evaporation. The pycnometer was calibrated by using conductivity water. The difference between the duplicate density values of all the solutions were found to be less than 0.01%.

Viscosity Measurements. The viscosities of all the solutions were measured by using a Hoppler BH-2 falling-sphere viscometer. In this viscometer, since the solution is sealed, the condensation of the solvent vapor at low temperatures and the loss of solvent at high temperatures are prevented. The viscometer was calibrated by using conductivity water. The tem-

[†] Present address: Inorganic Chemistry Division, Regional Research Laboratory, Jorhat 785 006, Assam, India.

Table I.	Densities	of the NiCl	, + С Н ,ОН	System a
Function	is of Temp	perature and	Concentra	tion

T/K	$\rho/(\rm{g \ cm^{-8}})$	T/K	ρ (g cm ⁻³)	
0.01817 m		0.06	624 m	
313.50	0.776 05	31 4.9 5	0.779 25	
312.45	0.77696	313. 9 0	0.78043	
311.35	0.77807	312.80	0.781 49	
310.20	0.77899	311.70	0.78269	
309.10	0.78002	310.60	0.78384	
[,] 308.00	0.781 01	309.50	0.784 99	
0.11	.805 m	0.42	91 m	
314.45	0.785 93	315.20	0.81617	
313.40	0.78686	314.50	0.817 33	
312.35	0.787 93	313.00	0.81829	
311.25	0.78912	311.95	0.819 41	
310.20	0.79012	310.85	0.82047	
309.10	0.791 22	309.70	0.821 61	
0.87	'56 m	1.28	811 m	
313.80	0.850 48	318.50	0.898 55	
312.65	0.851 68	317.20	0.899 83	
311.35	0.852 69	315.90	0.900 89	
310.15	0.853 85	314.65	0.90212	
308.95	0.854 93	313.35	0.903 29	
307.75	0.856 02	312.05	0.904 48	
2.18	140 m	2.6024 m		
317.25	0.967 56	316.70	1.00571	
315.85	0.968 94	315.30	1.007.24	
314.45	0.97007	313.85	1.008.60	
313.00	0.97140	312.30	1.01015	
311 65	0 972 87	310 75	1 011 93	
310.25	0.974 07	309.20	1.01344	
3.38	810 m	4 0805 m		
315 85	1 056 15	316.05	1 101 84	
314 30	1.057.66	314 45	1 103 34	
312 75	1.058.90	312.85	1 105 01	
311 20	1.060.35	311 95	1 106 51	
309.65	1 061 95	309.65	1 108 00	
209.00	1.00135	207.05	1.100.09	
300.00	1.003 33	307.90	1.10970	
5.30	086 m			
315.85	1.17371			
314.05	1.175 31			
312.35	1.177 09			
310.55	1.17869			
308.75	1.18050			
306.85	1.182.29			

Table II. Least-Squares Fitted Values of the Density Equation $\rho = a - b (t (^{\circ}C))$ for the NiCl₂ + CH₃OH System

$m/(\text{mol kg}^{-1})$	$a/(g \text{ cm}^{-3})$	$b \times 10^4/$ (g cm ⁻³ °C ⁻¹)	std dev in $ ho$, $\sigma imes 10^5$
0.01817	0.812 43	9.014	6.0
0.066 24	0.82311	10.486	3.0
0.11805	0.82715	9.994	5.0
0.4291	0.85775	9.888	3.0
0.8756	0.887 39	9.066	7.0
1.2811	0.94011	9.158	5.0
2.1840	1.008 59	9.306	9.0
2.602 4	1.050 59	10.304	7.0
3.3810	1.095 51	9.219	9.0
4.0805	1.143 86	9.800	4.0
5.3086	1.214 58	9.580	6.0

perature of the viscometer was maintained by circulating water from the thermostat through the outer jacket of the viscometer. The measured viscosities were reproducible to $\pm 0.1\%$.

Temperature Control. All the measurements were made in a NBE type ultrathermostat that maintained the temperature to ± 0.02 K.

Results and Discussion

The densities (ρ) of the nickel chloride-methanol system, presented in Table I, were found to be a linear function of temperature (Table II) at fixed molality. The dependence of

Figure 1. Density isotherm of the (I) NiCl₂ + CH₃OH system and viscosity isotherms of the (II) NiCl₂ + CH₃OH and (III) NiCl₂ + H₂O systems.

Figure 2. Plots of A, B, and T_0 parameters versus m for the NiCl₂ + CH₃OH system.

density on molality, m, however, is not linear (Figure 1), similar to that observed for aqueous nickel chloride systems (2).

The measured viscosities (η) are given in Table III. In Figure 1 the viscosity results for NiCl₂ + CH₃OH are compared with those for NiCl₂ + H₂O at 298.15 K. The variation of viscosity with molality for NiCl₂ + CH₃OH is more exponential than that for NiCl₂ + H₂O over the experimental range of concentration.

The temperature dependencies of η at different concentrations were fitted by using the least-squares technique to the Vogel-Tammann-Fulcher (VTF) equation of the form

$$\eta = AT^{1/2} \exp[B/(T - T_0)]$$
(2)

where A and B are empirical parameters and T_0 is the ideal glass transition temperature. The computed values of A, B, and T_0 are listed in Table IV. The B parameter has a greater value for the NiCl₂ + CH₃OH system compared to NiCl₂ + H₂O (2), which is characteristic of electrolytic solutions. The concentration dependencies of the parameters A, B, and T_0 are given in Figure 2. The ideal glass transition temperature T_0 (O) of pure methanol obtained from the intercept of the T_0 vs m plot (Figure 2) is 77.0 K, which is in reasonable agreement with the reported glass transition temperature T_g (103 K) (8). It has been reported (9) that the T_0 usually falls at 0.7 T_g to 0.8 T_0 for molecular liquids. The concentration at which a

Table III.	Viscosities of the NiCl ₂ + CH ₃ OH System as
Functions	of Temperature and Concentration

			-
T/K	η/cP	T/K	η/cP
0.01	817 m	0.066	24 m
288 15	0 6472	288 15	0 6910
202.15	0.6020	202 15	0 6404
250.10	0.0023	255.15	0.0404
298.15	0.5607	298.15	0.6129
303.55	0.5216	303.55	0.5556
308.15	0.4899	308.15	0.5227
313.85	0 4582	313.65	0 4915
219 15	0.4250	219 15	0 4635
310.15	0.4101	510.15	0.4000
323.15	0.4121	323.15	0.4390
0.11	805 m	0.429	1 m
288 15	0 7975	288.15	1 0103
200.10	0.7270	200.10	0.0214
293.15	0.0700	293.15	0.9314
298.15	0.6295	298.15	0.8552
303.65	0.5786	303.85	0.7756
308.15	0.5459	308.15	0.7271
313 45	0 5069	313 15	0 6665
010.15	0.0000	919 15	0.0000
310.15	0.4602	318.15	0.0201
323.15	0.4529	323.15	0.5882
0.87	56 m	1.281	1 m
288 15	1 5217	288.15	2 2304
200.10	1 2694	202.15	1 09/2
293.10	1.0004	200.10	1.5040
298.15	1.2321	298.15	1.7554
303.45	1.1191	303.75	1.5531
308.15	1.0186	308.15	1.4136
313.55	0.9148	313.15	1.2666
318 15	0.8534	318 15	1 1570
000.15	0.0004	000.15	1.1070
323.15	0.7875	323.15	1.0000
2.18	40 m	2.602	4 m
288.15	4.3442	288.15	6.0186
293 15	3.7597	293.15	5.1283
200.15	2 9746	208 15	4 4499
200.10	0.2740	250.10	9.7720
303.35	2.8380	303.45	3.7923
308.15	2.5242	308.15	3.3490
313.15	2.2089	313.55	2.8936
318.15	2.0051	318.15	2.6058
202 15	1 8062	303 15	2 2250
020.10	1.0002	020.10	2.0200
3.38	310 m	4.080	15 m
288.15	10.6027	288.15	17.5837
293.15	8.8761	293.15	14.3634
208 15	7 4789	208 15	11 8479
200.10	0.4102	230.10	0.0077
303.65	6.2009	303.25	9.8877
308.15	5.4345	308.15	8.3651
313.65	4.6391	313.25	7.0786
318.15	4.1263	318.15	6.1609
323.15	3.6377	323.15	5.3658
5.30	186 m		
288.15	41.8246		
293.15	32.9394		
298.15	26.2508		
303.25	20.9984		
908 15	17 9605		
010.10	14.0171		
313.35	14.2171		
318.15	12.2017		
323.15	10.4500		

Table IV. Least-Squares Fitted Values of the Parameters of Equation 2 for the NiCl₂ + CH₃OH System

$m/(\text{mol } kg^{-1})$	$A \times 10^3$	В	T_0/K	std dev in $\ln \eta$
0.01817	1.0610	754.77	77.5	0.0016
0.06624	1.0930	763.27	78.0	0.0098
0.11805	1.0191	784.60	78.5	0.0031
0.4291	0.9598	843.61	84.0	0.0037
0.8756	0.7641	937.60	91.5	0.0050
1.2811	0.7369	976.40	99.5	0.0040
2.1840	0.9663	966.34	115.0	0.0022
2.6024	1.0442	971.62	121.5	0.0042
3.3810	1.3788	943.29	134.0	0.0030
4.0805	1.8070	909.50	145.0	0.0030
5.3086	4.4007	742.18	171.0	0.0060

structural transition commences was found to be at around 2.0 m from the plot of B vs m (Figure 2). This critical concentration

Table V. Least-Squares Fitted Values of the Parameters of Equation 1 for the NiCl₂ + CH₃OH System

Figure 3. Plots of $\ln \eta$ versus $bm + cm^2$ for the NiCl₂ + CH₃OH system.

is in good agreement with the reported values of NiCl₂ + H₂O (2, 10).

In the range of concentration studied, the ion-solvent interaction may be considered to dominate. The viscosity B coefficient, which accounts the ion-solvent interaction, is obtained by multiplying the values of the a and b parameters of eq 1 (2). Therefore, viscosity versus concentration data were fitted by using the least-squares technique to eq 1, and a good fit has been obtained over the temperature and concentration range studied (Table V). The success of eq 1 in describing the concentration dependence of viscosity with reasonable accuracy is indicated by the linearity of the plot of ln η vs $bm + cm^2$ (Figure 3). The values of the *a* parameter (Table V), which is the viscosity of the solution at infinite dilution, are comparable within 4.0-6.0% with the reported viscosity data of methanol (11) at the corresponding temperature.

The calculated values of the viscosity B coefficient, 0.6159, 0.4956, 0.4023, and 0.3016 at 288, 298, 308, and 323 K, respectively, for NiCl₂ + CH₃OH are found to be about 1.5 times greater than the B values, 0.3255, 0.2653, and 0.2099 at 298, 308, and 323 K, respectively, of the NiCl₂ + H_2O system (2). The higher B values for $NiCl_2 + CH_3OH$ at a given temperature indicate that ion-solvent interactions are greater for the NiCl₂ + CH₃OH system than for the NiCl₂ + H₂O system.

Registry No. NiCl₂, 7718-54-9; CH₃OH, 67-56-1.

Literature Cited

- Mahiuddin, S.; Ismail, K. *Can. J. Chem.* **1982**, *60*, 2883. Mahiuddin, S.; Ismail, K. *J. Phys. Chem.* **1983**, *87*, 5241. Mahiuddin, S.; Ismail, K. *J. Phys. Chem.* **1984**, *88*, 1027. (2)
- (4) Moeller, T., Ed. Inorganic Synthesis; McGraw-Hill: New York, 1957; Vol. V.
- Vogel, A. I. A Textbook of Practical Organic Chemistry, 3rd ed.; ELBS: Longman, England, 1975. Ortega, J. J. Chem. Eng. Data 1982, 27, 312. American Institute of Physics Handbook, 3rd ed.; McGraw-Hill: New (5) (6)
- (7) York, 1972.
- (8) Sare, E. J.; Angell, C. A. J. Solution Chem. 1973, 2, 53.
- Angell, C. A.; Rao, K. J. J. Chem. Phys. 1972, 57, 470. Maisano, G.; Migliardo, P.; Wanderlingh, F.; Fontana, M. P. J. Chem.
- (10) hys. 1978, 68, 5594.
- (11) Weast, R. C., Ed. Handbook of Chemistry and Physics, 66th ed.; CRC Press: Boca Raton, FL, 1985.

Received for review July 2, 1990. Revised December 26, 1990. Accepted March 18, 1991. N.B. Financial support and laboratory facilities of the North-Eastern Hill University, Shillong and Computer facilities of RRL-Jorhat are gratefully acknowledged.